Unsupervised Regression with Applications to Nonlinear System Identification

نویسندگان

  • Ali Rahimi
  • Benjamin Recht
چکیده

We derive a cost functional for estimating the inverse of the observation function in nonlinear dynamical systems. Limiting our search to invertible observation functions confers numerous benefits, including a compact representation and no local minima. Our approximation algorithms for optimizing this cost functional are fast, and give diagnostic bounds on the quality of their solution. Our method can be viewed as a manifold learning algorithm that utilizes a prior on the lowdimensional manifold coordinates. The benefits of taking advantage of such priors in manifold learning, and searching for the inverse observation functions in system identification, are demonstrated empirically by learning to track moving targets from raw measurements in a sensor network setting and in an RFID tracking experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonlinear Grayscale Morphological and Unsupervised method for Human Facial Synthesis Based on an Example Image

Human facial generation of example image is used as a requirement for biometric applications for the purpose of identifying individuals. In this paper, face generation consists of three main steps. In the first step, detection of significant lines and edges of the example image are carried out using nonlinear grayscale morphology. Then, hair areas are identified from the face of sample. The fin...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

System identification of a beam with frictional contact

The nonlinear system becomes an area with numerous investigations over the past decades. The conventional modal analysis could not be  applied on nonlinear continuous system which makes it impossible to construct the reduced order models and obtain system response based on limited number of measurement points. Nonlinear normal modes provide a useful tool for extending modal analysis to nonlinea...

متن کامل

Semi-Supervised Regression and System Identification, Report no. LiTH-ISY-R-2940

System Identification and Machine Learning are developing mostly as independent subjects, although the underlying problem is the same: To be able to associate “outputs” with “inputs”. Particular areas in machine learning of substantial current interest are manifold learning and unsupervised and semi-supervised regression. We outline a general approach to semi-supervised regression, describe its...

متن کامل

Unsupervised Learning for Nonlinear PieceWise Smooth Hybrid Systems

This paper introduces a novel system identification and tracking method for PieceWise Smooth (PWS) nonlinear stochastic hybrid systems. We are able to correctly identify and track challenging problems with diverse dynamics and low dimensional transitions. We exploit the composite structure system to learn a simpler model on each component/mode. We use Gaussian Process Regression techniques to l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006